ADDITIONAL DILUTIONS QUICK CARD

Preparing Additional Dilutions

The purpose of a dilution is to decrease the concentration of a substance in a sample to a useful level.
This is done by adding a known amount of sample to a known amount of Preparation Reagent.
Dilution calculations depend on two rules:

RULE \#1

RULE \#2

The final dilution in a serial dilution is the product of all the dilutions that preceded it.

In serial dilutions, a sample that has already been diluted at least once is used as the source for further dilution. See example below.

FIRST DILUTION:

Sample A:
1 g of meat meal +3 mL of Preparation Reagent
$D=1:(1+3)$
$D=1: 4$

SECOND DILUTION:

$100 \mu \mathrm{~L}$ Sample A (prepared as shown above)
$+1,400 \mu \mathrm{~L}$ Preparation Reagent
$D=100:(100+1,400)$
$D=100: 1,500$ or $1: 15$

RESULTING FINAL DILUTION:
1:4 (first dilution) $\times 1: 15$ (second dilution) $=1: 60$

ADDITIONAL DILUTIONS QUICK CARD

General Guidelines for Dilutions

When a sample result is greater than the value of the highest calibrator, the instrument will flag the results as " HI ". The sample must be prepared at a higher dilution and retested. Unfortunately, there is no rule for determining the higher dilution when a sample flags " $\mathrm{HI}^{\prime \prime}$. Experience with the SafTest ${ }^{T M}$ System and products tested will help the operator gain a feel for determining the higher dilution.

Below are examples of serial dilutions and suggested dispensing amounts.

Starting with an initial dilution of 1:4

1. To make a $1: 8$ dilution from the initial $1: 4$ dilution prepare a 1:2 dilution.
Example: Aliquot $200 \mu \mathrm{~L}$ of sample to a glass test tube and add 200μ L of Preparation Reagent.
2. To make a $1: 32$ dilution from the initial $1: 4$ dilution prepare a 1:8 dilution.
Example: Aliquot $100 \mu \mathrm{~L}$ of sample to a glass test tube and add 700μ L of Preparation Reagent.
3. To make a 1:64 dilution from the initial 1:4 dilution prepare a $1: 16$ dilution.
Example: Aliquot $100 \mu \mathrm{~L}$ of sample to a glass test tube and add 1500μ L of Preparation Reagent.
4. To make a $1: 256$ dilution from the initial $1: 4$ dilution prepare a 1:64 dilution as outlined above. Using the 1:64 diluted sample prepare a 1:4 dilution.

Example: Aliquot $200 \mu \mathrm{~L}$ of sample to a glass test tube and add $600 \mu \mathrm{~L}$ of Preparation Reagent.

Starting with an initial dilution of $1: 10$

1. To make a $1: 20$ dilution from the initial $1: 10$ dilution prepare a 1:2 dilution.
Example: Aliquot $200 \mu \mathrm{~L}$ of sample to a glass test tube and add 200μ L of Preparation Reagent.
2. To make a $1: 100$ dilution from the initial $1: 10$ dilution prepare a 1:10 dilution.
Example: Aliquot $100 \mu \mathrm{~L}$ of sample to a glass test tube and add 900μ L of Preparation Reagent.
3. To make a $1: 500$ dilution from the initial $1: 10$ dilution prepare a 1:100 dilution as outlined above. Using the 1:100 diluted sample prepare a 1:5 dilution.
Example: Aliquot 200μ L of sample to a glass test tube and add 800μ L of Preparation Reagent.

MP Biomedicals

Americas: 800.854.0530 | custserv@mpbio.com Europe: 00800.7777 .9999 | custserv.eur@mpbio.com

